
断熱性能

ロックウールの断熱効果は、その体積中の95%以上を占めている空気が、ロックウールの繊維によって微細な空隙に区切られ、動きにくくなることによって発揮されます。ロックウール中の空気はその温度が上昇するにつれて、より活発に活

動するため、雰囲気温度の上昇とともに断熱性能は低下します。しかしロックウールの密度が高いほど、つまり単位体積中のロックウール繊維本数が多いほど、空気の流れの抵抗(通気抵抗)が増し、断熱性能の低下を防止します。

■ 熱伝導率 (100~600°C) 参考データ (JIS A 9501 保温保冷工事施工標準-般式より)

■ 高温雰囲気下の断熱性能

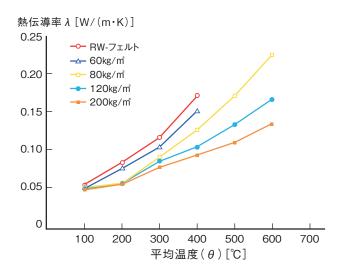
ロクセラムは耐火性に優れ、400℃程度の高温領域でも断熱材として利用できるため、プラント設備など厳しい条件下で幅広く利用されています。

熱伝導率算出参考式(保温JIS解説から抜粋)

	密度(kg/㎡)	熱伝導率 算出参考式W / (m·K) θ:温度 (℃) (²)
ロックウールボード 保温板 1号	40~100	$0.0337 + 0.000151 \cdot \theta (-20 \le \theta \le 100)$ $0.0395 + 4.71 \times 10^{-5} \cdot \theta + 5.03 \times 10^{-7} \cdot \theta^2 (100 < \theta \le 600)$
ロ _ツ クウールボード 保温板 2号	101~160	$0.0337 + 0.000128 \cdot \theta (-20 \le \theta \le 100)$ $0.0407 + 2.52 \times 10^{-5} \cdot \theta + 3.34 \times 10^{-7} \cdot \theta^2 (100 < \theta \le 600)$

■ 温域別での断熱性能

低温域 (100℃以下)


密度が $80\sim100$ kg/㎡で最低値を示しますが、 全密度範囲で大きな差はありません。 高温域 (100℃以上) 100℃以上では、温度の上昇とともに熱伝導率 は二次関数的に上昇します。なお、この傾向は 密度が高くなるほど穏やかになります。

【ロックウールの平均温度 (θ) と熱伝導率 (λ) の関係 】

ロックウールの熱伝導率(λ)は、平均温度(θ)が高くなると上昇し、ロックウールの密度(ρ)が低い程その上昇が著しくなります。これらの関係を図1、図2に示しました。

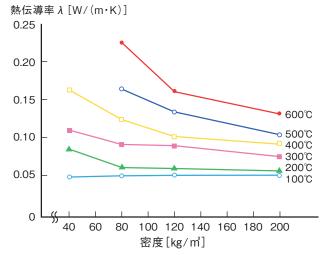
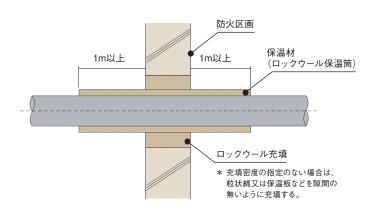
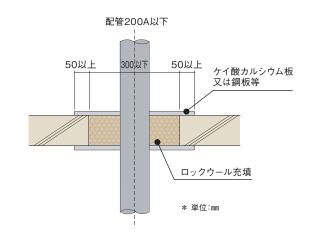

■ ロックウールの平均温度と密度の関係

図 1 ロックウールの平均温度 (θ) 熱伝導率 (λ) の関係

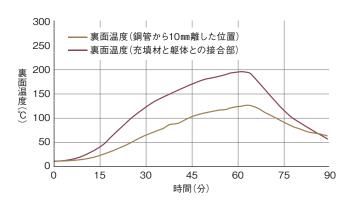
■ ロックウール密度と熱伝導率の関係


図2 同一平均温度 (θ) に置ける ロックウール密度 (ρ) と熱伝導率 (λ) の関係


配管の防火区画貫通部の説明

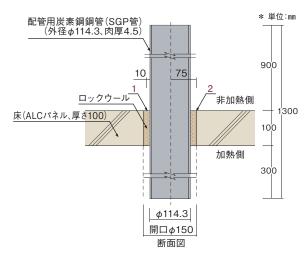
建築物の安全性に関する要求が高まる今日、なかでも防火区画貫通部に関しては、火災の拡大を防止する重要な機能を持つため、多岐にわたる規制があります。このページでは区画貫通部措置工法事例と性能試験の結果を紹介します。

1. 一般区画貫通部の例



2. 令8 区画貫通部及び共住区画貫通部の例

3. 試験結果


結果抜粋 ロックウール充填材(粒状綿、密度:156.5kg/m)

充填材:ロックウール

非加熱側へ10秒を超えて 断続する火災の噴出の有無	なし	
非加熱側へ10秒を超えて 断続する発炎の有無	なし	
火炎が通る亀裂等の損傷 及び隙間の発生の有無	なし	

■ 試験体概要

- 1: 裏面温度測定位置(鋼管から10mm離した位置)
- 2: 裏面温度測定位置(充填材と躯体との接合部)

■ 区画貫通部ロックウール充填試験結果

ロックウール の種類	貫通径 [mm]	給水管 呼び径	充填密度 [kg/㎡]	判定			
				火災 噴出	発炎	亀裂	合否
粒状綿	150	100A	150以上	なし	なし	なし	合格
			200以上	なし	なし	なし	合格
フェルト			150以上	なし	なし	なし	合格
	200		100以上	なし	なし	なし	合格
			150以上	なし	なし	なし	合格
ボード			80以上	なし	なし	なし	合格
			150以上	なし	なし	なし	合格
保温筒+フェルト			150以上	なし	なし	なし	合格

- 上記の通り、区画貫通処置工法として所定の密度以上のロックウールを充填すると、建築基準法施行令第129条の2の5第1項第7号ハの規定に基づく認定基準を満たします。(加熱時間60分)
- 注) 品質確認の試験であり、独自の認定ではありません。
- 設計・施工の際は、基準に沿った設計・施工をお願いします。